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Abstract

Ezisting gait recognition approaches do mnot give
their theoretical or experiential performance predic-
tions. Therefore, the discriminating power of gait as a
feature for human recognition cannot be evaluated. In
this paper, we first propose a kinematic-based approach
to recognize human by gait. The proposed approach es-
- timates 3D human walking parameters by performing a
least squares fit of the 3D kinematic model to the 2D
silhouette extracted from a monocular image sequence.
Next, a Bayesian based statistical analysis is performed
to evaluate the discriminating power of extracted fea-
tures. Through probabilistic simulation, we not only
predict the probability of correct recognition (PCR) with
regard to different within-class feature variance, but
also obtain the upper bound on PCR with regard to
different human silhouette resolution. In addition, the
mazimum number of people in a database is obtained
given the allowable error rate. This is extremely im-
portant for gait recognition in large databases.

1 Introduction

Model-based object recognition is concerned with
searching for a match: how to associate components
of the given data with corresponding parameters of
the object model [2]. From this viewpoint, approaches
can be classified as global matching or feature match-
ing. Global matching approaches consider finding a
transformation from a model to an image while fea-
ture matching approaches involve establishing a corre-
spondence between local features extracted from the
given data and corresponding local features of the ob-
ject model.

Boshra and Bhanu [1] present a method for pre-
dicting fundamental performance of object recognition.
They assume that both scene data and model objects
are represented by 2D point features and a data/model
match is evaluated using a vote-based criterion. Their
method considers data distortion factors such as un-
certainty, occlusion, and clutter, in addition to model
similarity. This is unlike previous approaches, which
consider only a subset of these factors. However, their
assumptions make their method only applicable to fea-
ture matching and not to global matching.

In our proposed approach of human recognition by

kinematic-based gait analysis, we use global matching
because we only have the global human silhouette infor-
mation before matching. The detailed information for
different body parts is obtained after matching. Next,
we carry out Bayesian based statistical analysis to eval-
uate the discriminating power of various features. We
address the prediction problem in the context of an
object recognition task as follows: (1) scene data are
represented by 2D regions where the region pixels are
discretized at some resolution, and model objects are
represented by 3D volumes; (2) an instance of a model
object in the scene data is assumed to be obtained by
applying some 3D to 2D transformation to the object;
(3) the matching criterion is Bayesian theory.

2 Motivation and Contributions

Current human recognition methods, such as finger-
prints, face or iris biometrics, generally require a coop-
erative subject, views from certain aspects and phys-
ical contact or close proximity. These methods can
not reliably recognize non-cooperating individuals at
a distance in real-world changing environmental con-
ditions. Moreover, in many applications of personnel
identification, many established biometrics can be ob-
scured. Gait, which concerns recognizing individuals
by the way they walk, can be used as a biometric with-
out the above-mentioned disadvantages.

In recent years, some approaches have already been
employed in automatic gait recognition (i.e., human
recognition by gait). Niyogi and Adelson [9] make
an initial attempt in a spatiotemporal (XYT) volume.
They first find the bounding contours of the walker,
and then fit a simplified stick model on them. A char-
acteristic gait pattern in XYT is generated from the
model parameters for recognition. Little and Boyd [7]
propose a model-free approach making no attempt to
recover a structural model of human motion. Instead
they describe the shape of the motion with a set of
features derived from moments of a dense flow distri-
bution. Similarly, He and Debrunner’s [3] approach
detects a sequence of feature vectors based on Hu’s
moments of motion segmentation in each frame, and
the individual is recognized from the feature vector
sequence using hidden Markov models. To avoid a
feature extraction process which may reduce reliabil-
ity, Murase and Sakai [8] propose a template matching
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Figure 1. 3D Human Kinematic Model.
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Figure 2. Body part geometric representation.

method to calculate the spatio-temporal correlation in
a parametric eigenspace representation for gait recog-
nition. Huang et al. [5, 4] extend this approach by
combining canonical space transformation (CST) with
eigenspace transformation (EST) for feature selection.

However, existing gait recognition approaches only
consider human walking frontoparallel to the image
plane. Moreover, none of the existing gait recognition
approaches give their theoretical or experiential perfor-
mance prediction. Therefore, we cannot evaluate the
discriminating power of gait as a feature for human
recognition. In this paper, we propose a kinematic-
based approach to recognize human by gait, and carry
out Bayesian based statistical analysis to predict recog-
nition performance. The proposed approach estimates
3D human walking parameters by performing a least
squares fit of the 3D kinematic model to the 2D sil-
houette extracted from a monocular image sequence.
The gait features are then generated from the esti-
mated model parameters for human recognition. Our
approach eliminates the assumption of human walking
frontoparallel to the image plane, which is desirable in
many gait recognition applications.

3 Technical Approach
3.1 Human Kinematic Model

A human body is considered as an articulated ob-
ject, consisting of a number of body parts. The body
model adopted here is shown in Figure 1, where a circle
represents a joint and a rectangle represent a body part
(N: neck, S: shoulder, E: elbow, W: waist, H: hip, K:
knee, and A: ankle). Most joints and body part ends
can be represented as spheres, and most body parts

can be represented as cones. The whole human kine-
matic model is represented as a set of cones connected
by spheres [6]. Figure 2 shows that most of the body
parts can be approximated well in this manner. How-
ever, the head is approximated only crudely by a sphere
and the torso is approximated by a cylinder with two
spheroid ends.

3.2 Matching 3D Model with 2D Silhouette

The matching procedure determines a parameter
vector x so that the proposed 3D model fits the given
2D silhouette as well as possible. For that purpose, two
chained transformations transform human body local
coordinates (z,y, z) into image coordinates (z',y’)[12].
The first transformation transforms local coordinates
into camera coordinates; while the second transfor-
mation projects camera coordinates into image coor-
dinates.

Each 3D human body part is modeled by a cone
with two spheres s; and s; at its ends, as shown in
Figure 2 [6]. Each sphere s; is fully defined by 4 scalar
values, (z;,yi, 2i,Ti), which define its location and size.
Given these values for two spheroid ends (z;, y;, zi, ;)
and (z;,y;,2;,r;) of a 3D human body part model, its
projection P(;;y onto the image plane is the convex hull
of the two circles defined by (zf,y;,7{) and (z},y},7}).

If the 2D human silhouette is known, we may find
the relative 3D body parts locations and orientations
with the knowledge of camera parameters. We propose
amethod to perform a least squares fit of the 3D human
model to the 2D human silhouette. That is, to estimate
the set of sphere parameters x = {x; : (@i,yi,2i,7:)}
by choosing x to minimize

error(x;I) = Z (Px(=',9") - I=",9"))?, (1)
z'y'el
where I is the silhouette binary image, Px is the binary
projection of the 3D human model to image plane, and
z', y' are image plane coordinates.

3.3 Model Parameter Selection

Human motion is very complex due to so many de-
grees of freedom (DOFs). To simplify the matching
procedure, we use the following reasonable assump-
tions: (1) the camera is stationary; (2) people are walk-
ing before the camera at a distance; (3) people are mov-
ing in a constant direction; (4) the swing direction of
arms and legs parallels to the moving direction. Ac-
cording to these assumptions, we do not need to con-
sider the waist joint, and only need to consider one
DOF for each other joint. Therefore, the elements of
the parameter vector of the 3D human kinematic model
are defined as: (a) Radius r;(11): torso(3), shoulder,
elbow, hand, hip, knee, ankle, toe, and head; Length
1;(9): torso, inter-shoulder, inter-hip, upper arm, fore-
arm, thigh, calf, foot, and neck; (b) Location (z,y)(2);
Angle 6;(11): neck, left upper arm, left forearm, right
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upper arm, right forearm, left thigh, left calf, left foot,
right thigh, right calf, and right foot. With 33 station-
ary and kinematic parameters, the projection of the
human model can be completely determined.

3.4 Silhouette Extraction

Assuming that people are the only moving objects
in the scene, they can be extracted by a simple back-
ground subtraction method. Notice that an area cast
into shadow often results in a significant change in in-
tensity without much change in chromaticity. Given
a video sequence containing moving people and the
corresponding background image, for each frame I; in
the sequence, the color value difference Ap;(z,y) =
[|pi(z,y) — Py(z,y)|| is computed for each pixel, where
pi(z,y) and py(z,y) are RGB color values of the pixel
at (z,y) in the ith frame and background image, re-
spectively. The chromaticity is computed as

re(@y) = r(2,9)/(r@y) +9(,y) + bz, )
9e(z,y) = g(z,9)/(r(z,y) + 9(z,y) + b(z,y)).
We have Arg(z,y) = ITci(iU,y)—ch(l':yN

and  Agei(z,y) = 9¢i(%,y) — gen(z,y)|-

Given thresholds ¢; and ¢, if

(Api(z,y) > t1) A ((Arei(z,y) > t2) V (Agei(z,y) > t2))

the pixel at (z,y) is determined to be part of the mov-
ing objects; otherwise, it is part of the background.

After the silhouette has been cleaned by a pre-
processing procedure, its height, width and centroid
can be easily extracted for motion analysis. In ad-
dition, the moving direction of the walking person is
determined as follows

-1 _f(hazhn) i ;
i L g
P h—lyﬁ\% +, otherwise.

where f is the camera focal length, y; and yy are the
horizontal centroid of the silhouette in the first and
Nth frame, and h; and hy are the height of the sil-
houette in the first and Nth frame.

3.5 Stationary Parameter Estimation

The stationary parameters include body part length
and joint radius. Notice that human walking is a cyclic
motion, so a video sequence can be divided into mo-
tion cycles and studied separately. In each walking
cycle, the silhouette with minimum width means that
the person stands straight and that means the most
occlusion; the silhouette with maximum width means
the least occlusion and, therefore, it is more reliable.

To estimate the stationary parameters, we first se-
lect some key frames (4 frames in our experiments)
which contain more reliable silhouettes, and then per-
form matching procedure on the key frames as a whole.

The corresponding feature vector thus includes 20 com-
mon stationary parameters and 13*4 individual kine-
matic parameters. Next, we first initialize these pa-
rameters according to the human statistical informa-
tion. Then, the set of parameters is estimated from
these initial parameters by choosing a parameter vec-
tor x to minimize the least square error in equation (1)
with respect to the same kinematic constraints.

After the matching algorithm is converged, the esti-
mated stationary parameters so obtained are used for
kinematic parameter estimation of other frames. At
the same time, the estimated kinematic parameters of
key frames are used for prediction. Because even the
same person might walk at different speed, we normal-
ize the estimated kinematic parameters of each walking
cycle to a fix-length walking cycle, and the gait features
are generated from the normalized walking cycle.

4 Recognition Performance Prediction

In this paper, we only use features from station-
ary parameters for gait recognition. In the above-
mentioned stationary parameters, radius parameters
will be different if the same person is in different
clothes, and are thus not reliable for recognition. Sim-
ilarly, inter-shoulder and inter-hip length parameters
are not reliable because people usually walk within
some angle along the direction pedicular to the cam-
era axis. The head region depends on the hair style,
which will change if the view changes, and the head
representation in our model (sphere) is not precise in
some cases, so the estimated neck length is also not
reliable. Therefore, the feature vector selected for hu-
man recognition in our approach includes 6 elements:
torso length, upper arm length, forearm length, thigh
length, calf length, and foot length, which are not sen-
sitive for recognizing human with different clothes. In
this paper, we consider uncertainties for feature vectors
in two ways: the ideal case - uncertainties only from
different resolution, and the general case - uncertainties
from various factors.

4.1 Body Part Length Distribution

To predict the performance of recognizing human
from body part lengths, we have to know the prior
length distributions of body parts over human popula-
tion. The data are called static anthropometric data
shown in Table 1 [10]. Although the data are surveyed
in the British population, the predicted performance
on it is still applicable in some sense. In general, the
mean of body part lengths will change but the standard
deviation will not change a lot in different populations.
Assuming that men and women have the same popu-
lation, the overall distributions for each of the body
part lengths are obtained. In this paper, we only con-
sider that the body part lengths are independently dis-
tributed due to the absence of statistical knowledge of
their correlation.
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body part I o I o
length men | men | women | women
torso length 595 | 32 555 31
upper arm length | 365 20 360 17
forearm length 475 | 21 430 19
thigh length 495 | 32 480 30
calf length 545 | 32 500 27
foot length 265 14 235 12

Table 1. Anthropometric estimates for British
adults 19-65 years (all lengths in millimeters).

4.2 Performance Prediction in the General Case

In the general case, uncertainties of features come
from various sources: image quantization error, camera
calibration error, silhouette segmentation error, match-
ing error, and body part occlusion. To completely
model the uncertainties of 3D body part lengths, we
have to model all the above-mentioned factors. This is
a challenging task because it is difficult to mathemati-
cally find the distribution functions of uncertainties for
all these factors. A reasonable approach is to estimate
the uncertainties on ground truth data, i.e., training
data. Assuming that feature vectors obtained from a
feature extraction approach for a person are normally
distributed in the given feature space, we can easily
obtain the within-class variance from the experimen-
tal results on the training data. Then, the obtained
within-class variance can be used to predict the recog-
nition performance of this approach.

According to Bayes decision theory, an unknown
feature vector x is assigned to class w; if P(w;|x) >
P(wjlx) ¥j # i [11]. Let gi(x) = In(p(xlwi)P(wy)),
this decision test becomes classifying x in w; if g;(x) >
9;(x) Vj #1i.

Assuming the feature vector x for a person w; is
normally distributed in /-dimensional feature space, the
likelihood functions of w; with respect to x follow

) = 1 x _1 — ATt e e
p(x|w;) = (27r)%!2i|%e p( 5 (X — i) T (x uz))

for i = 1,...,M, where p; = E[x] is the mean value
of the w; class and ¥; is the [ x [ covariance matrix
defined as ¥; = E[(x — u;)(x — p;)T]. For simplic-
ity, we assume that ¥; = oI for all 4, i.e., each of the
independent features has an identical Gaussian distri-
bution. Therefore, maximum g;(x) implies minimum
Euclidean distance: dg = ||x — p;||. Thus, feature vec-
tors are assigned to classes according to their Euclidean
distances from the respective mean vectors.

With the body part length distribution in Table 1
and the within-class standard deviation o of the fea-
tures obtained from a feature extraction approach, we
can predict its probability of correct recognition (PCR)
with regard to the number of classes (people) in the
database.
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Figure 3. Uncertainty computation for the given sil-
houette resolution r (in millimeters/pixel), the body
part length L, view angles a and b, and the walking
direction c.

4.3 Upper Bound on PCR

We have considered the uncertainties in the general
case, which are dependent on feature extraction ap-
proaches. Although the predicted performance indi-
cates the discriminant power of features extracted by
different approaches, and these approaches can there-
fore be compared, we still do not know the upper bound
on PCR which can be achieved. In the ideal case, image
quantization errors, i.e., the human silhouette resolu-
tion, is the only source of uncertainties. By analyzing
the uncertainties given a fixed silhouette resolution, we
can obtain the upper bound on PCR with regard to the
number of classes (people) in the database.

Given the silhouette resolution 7, we can compute
the corresponding uncertainty from the body part
length L, view angles a and b, and the walking di-
rection ¢ through two steps as shown in Figure 3. The
first step is projecting the 3D length L to length I’ in
the 2D continuous plane. We obtain the projection of
L on the plane at depth h which is perpendicular to
the camera axis as follows:

L' = L(cosc + sinctan(a + b)). 6))

Figure 3(a) only shows the case where a > 0, b > 0
and ¢ > 0. We can easily derive the same equation
in other cases. Then the corresponding length of L in
the continuous image plane can be computed from the
following equation:

I'=L'f/h=L', (4)

where f is the camera focus length.

The second step is the image quantization step as
shown in Figure 3(b). For every 2D point falling into a
box in the continuous image plane, it’s location is repre-
sented by the center location of the box in the discrete
image plane. Therefore, the corresponding length of
L in the discrete image plane is the discrete value p'.
From Equations 3 and 4, we can obtain the following
results

P =p'hff=p'r (5)
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Figure 4. Predicted PCR with regard to different

database size and different within-class standard

deviation values of the extracted features (general

case).

" P’ _ p'r

~ cosc+sinctan(a+b) ~ cosc+ sinctan(a + b)’

(6)

where P is the corresponding length of p' in 3D space
and P’ is the projection of P on the plane at depth h
which is perpendicular to the camera axis. Therefore,
the overall error in Figure 3 is P — L. Considering
h > L in our applications, we have b ~ 0, and Equation
(6) becomes

(7)

Assuming the elements in the feature vector are identi-
cally independently distributed, the Euclidean distance
classification criteria is still effective.

Assuming that the quantization error is uniformly
distributed in the r x 7 area, view angle a is uniformly
distributed from —45° to 45° of arc, and walking direc-
tion ¢ is uniformly distributed from —30° to 30° of arc,
we can predict the recognition performance with re-
gard to the number of classes (people) in the database
through a simulation approach. The prediction results
are upper bounds on PCR with regards to different
human silhouette resolution values.

P =p'r/(cosc+sinctana).

5 Experimental Results
5.1 Performance Prediction Results

In our experiments, the performance prediction
results are obtained through simulation approaches.
First we randomly generate the body part lengths of M
classes (people) according to the distribution of differ-
ent body part lengths. Next, for each of the M classes,
we randomly generate N instances for this class ac-
cording to the uncertainties in Section 4.2 or Section
4.3. Finally, we obtain the recognition rate in the cur-
rent experiment. After this experiment has been re-

Number of people in the database

Figure 5. Predicted upper bound on PCR with re-
gard to different database size and different human
silhouette resolution values (ideal case).

Human VHS Digital High
Silhouette Video Definition
Occupancy 240 lines | 480 lines | 1080 lines

100% of frame 6.98 3.49 1.55
75% of frame 9.31 4.65 2.07
50% of frame 13.96 6.98 3.10
25% of frame 27.92 13.96 6.20

Table 2. Resolution (mm/pixel) for a 1675 mm (pop-
ulation average height) person occupying different
vertical portions of the frame with different video
formats.

peated for K times, we can obtain the average recog-
nition rate. If M % K are large enough (M = 100 and
K =100 in our experiments), this average recognition
rate can be viewed as the predicted PCR in the gen-
eral case (Figure 4), and upper bounds on PCR in the
ideal case (Figure 5). From these prediction results, we
can find the corresponding maximum number of peo-
ple in a database given the allowable error rate. Table
2 shows the corresponding resolution (mm/pixel) for
a 1675 mm (population average height) person occu-
pying different vertical portions of the frame with dif-
ferent video formats. It is shown that most of these
resolutions are good enough for human recognition in
databases of less than 500 people.

Our prediction results are based on the assumption
that the selected length features are independently dis-
tributed with an identical Gaussian distribution. This
assumption may not accurately reflect different types
of perturbations. In the future, We will investigate the
real feature distribution under different types of per-
turbations.

5.2 Recognition Results on Real Data

The video data used in our experiments are real hu-
man walking data recorded in an outdoor environment,
and there is only one walking person at the same time.
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Figure 6. Sample sequences in our database.

Eight different people walk along different directions
(within [—45°,45°] along the image plane). The size of
image frames is 180 x 240. In our experiments, we first
manually divide video data into single-cycle sequences,
and then select 15 sequences from each person: 10 se-
quences for training and 5 sequences for testing. Fig-
ures 6 shows sequences in our gait database.

The least square matching algorithm is implemented
using a Genetic algorithm. The fitness function is com-
puted from the matching error in Equation (1). In our
experiments, our approach achieves 60% recognition
rate on the training dataset using the Leave-One-Out
method. The performance on the testing data is 42%
recognition rate. We also compute the average stan-
dard deviation for each person in the database which is
20 mm, and the corresponding predicted PCR is 87%.
The correct recognition rate in our approach is much
lower than this PCR because the PCR is computed
on the data distributed according to Table 1 while the
data in our database are not well distributed due to the
small data size, i.e., they have more similarity. The hu-
man silhouette resolution in our database varies from
20 to 30 mm/pixel, and the corresponding predicted
upper bound on PCR in the ideal case is from 94.67%
to 98.80%. The predicted PCR (87%) is lower than
the upper bound because our feature extraction ap-
proach introduces several additional uncertainties such
as camera calibration error, silhouette segmentation er-
ror, matching error, and body part occlusion.

Note that the use of binary silhouette to fit 3D model
suffers from ambiguity as a result of body parts self-
occlusion, and the use of least squares makes it sensitive
to noise in the silhouette. However, this problem can be
solved by considering the correlation between adjacent
frames.

6 Conclusions

In this paper, we proposed a Bayesian based statis-
tical analysis to evaluate the discriminating power of
extracted features. Through probabilistic simulation,

we not only obtain the PCR for our approach, but also
obtain the upper bound on PCR with regard to dif-
ferent human silhouette resolution in ideal cases. The
obtained PCR for our approach is lower than the up-
per bound because our feature extraction approach in-
troduces several additional uncertainties such as image
quantization error, camera calibration error, silhouette
segmentation error, matching error, and body part oc-
clusion. Through the theoretical analysis, we obtain
the upper bound on PCR for the given silhouette res-
olution, and can accordingly improve the recognition
performance by reducing error introduced. In addi-
tion, we obtain the maximum number of people in the
database given the allowable error rate. This will guide
future research for gait recognition in large databases.
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